Quantum thermal transport in the charged Sachdev-Ye-Kitaev model: thermoelectric Coulomb blockade

Supplemental Material

Andrei I. Pavlov ${ }^{1}$, Mikhail N. Kiselev ${ }^{1}$
${ }^{1}$ The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
We adopt the notations and definitions of the main text and use the numeration of equations and references of the Letter.

DERIVATION OF G, G_{T} AND κ

In accordance with Eq.(1), the transport coefficients can be found by taking derivatives of Eq.(4) by voltage at uniform temperature (coefficient G) and by temperature at zero voltage (coefficient G_{T}). Here we perform this procedure explicitly.

Let us start with the conductance G. It is defined as

$$
\begin{equation*}
G=\left.\frac{I}{\Delta V}\right|_{\Delta V=0}=\left.2 \pi \int_{-\infty}^{\infty} d \varepsilon \rho_{a}(\epsilon) \rho_{c}(\epsilon) \partial_{\Delta V}(f(\epsilon+\Delta V, T+\Delta T)-f(\epsilon, T))\right|_{\Delta V=0} \tag{S1.1}
\end{equation*}
$$

$\rho_{a}(\epsilon)=\left(2 \pi v_{F}\right)^{-1}$ (see the main text), so this expression is further simplified as

$$
\begin{equation*}
G=-\frac{1}{4 v_{F} T} \int_{-\infty}^{\infty} d \epsilon \frac{\rho_{c}(\epsilon)}{\cosh ^{2}\left(\frac{\epsilon}{2 T}\right)} \tag{S1.2}
\end{equation*}
$$

It was shown in [28] that the density of states $\rho_{c}(\epsilon)$ can be expressed in a general form via the T-matrix \mathcal{T} in the real time representation

$$
\begin{equation*}
\rho_{c}(\epsilon)=-\frac{1}{\pi} \cosh \left(\frac{\epsilon}{2 T}\right) \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right) e^{i \epsilon t} \tag{S1.3}
\end{equation*}
$$

Combining Eqs.(S1.2) and (S1.3), we have

$$
\begin{equation*}
G=\frac{1}{4 \pi v_{F} T} \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right) \int_{-\infty}^{\infty} d \epsilon \frac{e^{i \epsilon t}}{\cosh \left(\frac{\epsilon}{2 T}\right)}=\frac{1}{2 v_{F}} \int_{-\infty}^{\infty} \frac{d t}{\cosh (\pi T t)} \mathcal{T}\left(\frac{1}{2 T}+i t\right) \tag{S1.4}
\end{equation*}
$$

G_{T} is obtained in the same way.

$$
\begin{equation*}
G_{T}=\left.\frac{I}{\Delta T}\right|_{\Delta T=0}=\left.2 \pi \int_{-\infty}^{\infty} d \varepsilon \rho_{a}(\epsilon) \rho_{c}(\epsilon) \partial_{\Delta T}(f(\epsilon, T+\Delta T)-f(\epsilon, T))\right|_{\Delta T=0} \tag{S1.5}
\end{equation*}
$$

Plugging DOS Eq.(S1.3) in Eq.(S1.5), we obtain

$$
\begin{equation*}
G_{T}=\frac{i}{4 v_{F} \pi T^{2}} \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right) \frac{\partial}{\partial t} \frac{2 \pi T}{\cosh (\pi T t)}=-\frac{i \pi}{2 v_{F}} \int_{-\infty}^{\infty} d t \frac{\sinh (\pi T t)}{\cosh ^{2}(\pi T t)} \mathcal{T}\left(\frac{1}{2 T}+i t\right) \tag{S1.6}
\end{equation*}
$$

By treating the thermal current in the similar way, we get the coefficient K and the thermal conductance κ.

$$
\begin{equation*}
K=-\frac{1}{4 v_{F} T} \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right) \frac{\partial^{2}}{\partial t^{2}} \frac{1}{\cosh (\pi T t)}=-\frac{\pi^{2} T}{2 v_{F}} \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right)\left\{\frac{1}{\cosh (\pi T t)}-\frac{2}{\cosh ^{3}(\pi T t)}\right\} \tag{S1.7}
\end{equation*}
$$

here we used the identity $\sinh ^{2} x \equiv \cosh ^{2} x-1$.

$$
\begin{equation*}
\kappa=K-\frac{1}{T} \frac{G_{T}^{2}}{G}=\frac{\pi^{2} T}{v_{F}} \int_{-\infty}^{\infty} d t \mathcal{T}\left(\frac{1}{2 T}+i t\right) \frac{1}{\cosh ^{3}(\pi T t)}-T \pi^{2} G-\frac{1}{T} \frac{G_{T}^{2}}{G} \tag{S1.8}
\end{equation*}
$$

These expressions are Eqs. (5-7) from the main text.

CORRELATORS

Two-point Coulomb correlator $D\left(\tau_{1}, \tau_{2}\right)$

Let us reproduce here the derivation on then so-called Coulomb boson correlator arising due to averaging of the $U(1)$ gauge field:

$$
\begin{equation*}
D\left(\tau_{1}, \tau_{2}\right)=\left\langle e^{-i \phi\left(\tau_{1}\right)} e^{i \phi\left(\tau_{2}\right)}\right\rangle_{\phi} \tag{S2.1}
\end{equation*}
$$

The Green's function antiperiodicity condition $G\left(\frac{\beta}{2}\right)=-G\left(-\frac{\beta}{2}\right)$ imposes that $\phi\left(\frac{\beta}{2}\right)=\phi\left(-\frac{\beta}{2}\right)+-2 \pi i \mathcal{E}+2 \pi W$, where \mathcal{E} is the spectral asymmetry, W in the winding number. We decompose the ϕ field such that $\phi(\tau)=$ $\eta(\tau)+2 \pi(W-i \mathcal{E}) T \tau$ introducing a periodic function $\eta(\tau): \eta\left(\frac{\beta}{2}\right)=\eta\left(-\frac{\beta}{2}\right)$. The correlator (S2.1) now reads

$$
\begin{align*}
& D\left(\tau_{1}, \tau_{2}\right)=\frac{1}{Z_{C}} \sum_{W \in Z} \int D[\eta] e^{-i \eta\left(\tau_{1}\right)} e^{i \eta\left(\tau_{2}\right)} e^{-2 \pi i(W-\mathbf{i} \mathcal{E}) T\left(\tau_{1}-\tau_{2}\right)} e^{-\int d \tau \eta^{\prime}(\tau) \frac{1}{4 E_{C}} \eta^{\prime}(\tau)-\pi^{2} T \frac{(W-i \mathcal{E})^{2}}{E_{C}}} \tag{S2.2}\\
&=\left\langle e^{-i \eta\left(\tau_{1}\right)} e^{i \eta\left(\tau_{2}\right)}\right\rangle_{\eta}\left\langle e^{-2 \pi i(W-i \mathcal{E}) T\left(\tau_{1}-\tau_{2}\right)}\right\rangle_{W} \tag{S2.3}
\end{align*}
$$

Z_{C} is the partition sum which normalizes the correlator
We start with averaging over the η fields (we use here the Fourier image $\eta_{m}=\frac{1}{\beta} \int_{0}^{\beta} d \tau \eta_{\tau} e^{i \omega_{m} \tau}, \omega_{m}=2 \pi T m$):

$$
\begin{equation*}
\langle\ldots\rangle_{\eta}=\int D[\eta] e^{i \int_{\tau_{1}}^{\tau_{2}} d \tau \eta^{\prime}(\tau)} e^{-\int d \tau \eta^{\prime}(\tau) \frac{1}{4 E_{C}} \eta^{\prime}(\tau)}=\int D[\eta] e^{\beta \sum_{m \neq 0}\left(\frac{\omega_{m}^{2} \eta-m \eta_{m}}{4 E_{C}}-i \eta_{m} J_{-m}^{\tau_{1} ; \tau_{2}}\right)}, \tag{S2.4}
\end{equation*}
$$

where $J_{m}^{\tau_{1}, \tau_{2}}=e^{i \omega_{m} \tau_{1}}-e^{i \omega_{m} \tau_{2}}$ is the Fourier image of $\delta\left(\tau-\tau_{1}\right)-\delta\left(\tau-\tau_{2}\right)$. The resulting integral over η is Gaussian, it gives

$$
\begin{equation*}
\langle\ldots\rangle_{\eta}=e^{-\beta \sum_{m \neq 0} \frac{E_{C}}{\omega_{m}^{2}} J_{-m}^{\tau_{1}, \tau_{2}} J_{m}^{\tau_{1}, \tau_{2}}}, \quad q J_{-m}^{\tau_{1}, \tau_{2}} J_{m}^{\tau_{1}, \tau_{2}}=2\left(1-e^{i \omega_{m}\left(\tau_{2}-\tau_{1}\right)}\right) \tag{S2.5}
\end{equation*}
$$

This $\langle\ldots\rangle_{\eta}$ correlator was discussed in [72-76]. Using the Sommerfeld-Watson transformation for Eq.(S2.4), one obtains

$$
\begin{equation*}
\langle\ldots\rangle_{\eta}=e^{-E_{C}\left(\left|\tau_{2}-\tau_{1}\right|-\frac{\left(\tau_{2}-\tau_{1}\right)^{2}}{\beta}\right)} \tag{S2.6}
\end{equation*}
$$

The other part of the Coulomb correlator, namely contribution from the winding numbers was evaluated in [72]. Using the Poisson formula

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} e^{-\frac{a}{2} k^{2}+i x k}=\sqrt{\frac{2 \pi}{a}} \sum_{n=-\infty}^{\infty} e^{-\frac{1}{2 a}(x-2 \pi n)^{2}} \tag{S2.7}
\end{equation*}
$$

one can evaluate the partition sum Z_{C} and the two-point propagator $\left\langle e^{2 \pi i T(W-i \mathcal{E})\left(\tau_{2}-\tau_{1}\right)}\right\rangle_{W}$.

$$
\begin{gather*}
Z_{C}=\sum_{W} e^{-\frac{4 \pi^{2} T(W-i \mathcal{E})^{2}}{4 E_{C}}}=\sum_{m} e^{-\frac{E_{C}}{T} m^{2}+2 \pi m \mathcal{E}}, \tag{S2.8}\\
\langle\ldots\rangle_{W}=\frac{1}{Z_{C}} \sum_{m} e^{-\frac{\pi^{2} T(W-i \mathcal{E})^{2}}{E_{C}}+2 \pi i T(W-i \mathcal{E})\left(\tau_{2}-\tau_{2}\right)}=\frac{1}{Z_{C}} \sum_{m} e^{-\beta E_{C}\left(m-\left(\tau_{2}-\tau_{1}\right) T\right)^{2}+2 \pi m \mathcal{E}} . \tag{S2.9}
\end{gather*}
$$

The correlators above are normalized by corresponding partition sums. Quadratic terms in the exponents of both correlators (S2.6) and (S2.9) cancel each other, so the result is

$$
\begin{equation*}
D\left(\tau_{1}, \tau_{2}\right)=\frac{e^{-E_{C}\left|\tau_{2}-\tau_{1}\right|}}{Z_{C}} \sum_{m=-\infty}^{\infty} e^{-2 E_{C} m\left(\tau_{2}-\tau_{1}\right)-\beta E_{C} m^{2}+2 \pi m \mathcal{E}} \tag{S2.10}
\end{equation*}
$$

Four-point Coulomb correlator

Now we consider the same procedure applied to the four point Coulomb correlator

$$
\begin{equation*}
F\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=\left\langle e^{-i \phi\left(\tau_{1}\right)} e^{i \phi\left(\tau_{2}\right)} e^{-i \phi\left(\tau_{3}\right)} e^{i \phi\left(\tau_{4}\right)}\right\rangle_{\phi} \tag{S2.11}
\end{equation*}
$$

The approach is analogous to the former (two-point) case. Decomposing $\phi(\tau)$ field into the periodic field $\eta(\tau)$ and the winding number contribution, we get factorization of two propagators.

$$
\begin{gather*}
\left\langle e^{\beta \sum_{m \neq 0} \omega_{m} \eta_{m}\left(\int_{\tau_{1}}^{\tau_{2}} d \tau e^{i \omega_{m} \tau}+\int_{\tau_{3}}^{\tau_{4}} d \tilde{\tau} e^{i \omega_{m} \tilde{\tau}}\right)}\right\rangle_{\eta}=e^{-\beta \sum_{m \neq 0} \frac{E_{C}}{\omega_{m}^{2}}\left(J_{-m}^{\tau_{1} ; \tau_{2}}+J_{-m}^{\tau_{3} ; \tau_{4}}\right)\left(J_{m}^{\tau_{1} ; \tau_{2}}+J_{m}^{\tau_{3} ; \tau_{4}}\right)} . \tag{S2.12}\\
\left(J_{m}^{\tau_{1} ; \tau_{2}}+J_{m}^{\tau_{3} ; \tau_{4}}\right)=2\left(1-e^{i \omega_{m} \tau_{41}}\right)+2\left(1-e^{i \omega_{m} \tau_{32}}\right)+2 e^{i \omega_{m} \tau_{31}}-2 e^{i \omega_{m} \tau_{21}}+2 e^{i \omega_{m} \tau_{42}}-2 e^{i \omega_{m} \tau_{43}}, \tag{S2.13}
\end{gather*}
$$

where we denoted $\tau_{i j} \equiv \tau_{i}-\tau_{j}$.

$$
\begin{equation*}
\langle\ldots\rangle_{\eta}=e^{-E_{C}\left(\left|\tau_{41}\right|+\left|\tau_{32}\right|-\left|\tau_{31}\right|-\left|\tau_{42}\right|+\left|\tau_{21}\right|+\left|\tau_{43}\right|\right)+\frac{E_{C}}{\beta}\left(\tau_{41}^{2}+\tau_{32}^{2}-\tau_{31}^{2}-\tau_{42}^{2}+\tau_{21}^{2}+\tau_{43}^{2}\right)} \tag{S2.14}
\end{equation*}
$$

Averaging over winding numbers, we get

$$
\begin{equation*}
\left\langle e^{2 \pi i(W-i \mathcal{E}) T\left(\tau_{21}+\tau_{43}\right)}\right\rangle_{W}=\frac{1}{Z_{C}} \sum_{m} e^{-\beta E_{C}\left(m-\left(\tau_{21}+\tau_{43}\right) T\right)^{2}+2 \pi m \mathcal{E}} \tag{S2.15}
\end{equation*}
$$

The quadratic terms in these two correlators cancel each other, so the resulting four-point function is

$$
\begin{equation*}
F\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=\frac{1}{Z_{C}} \sum_{m} e^{-\frac{E_{C}}{T} m^{2}-E_{C}\left(\left|\tau_{41}\right|+\left|\tau_{32}\right|-\left|\tau_{31}\right|-\left|\tau_{42}\right|+\left|\tau_{21}\right|+\left|\tau_{43}\right|\right)+E_{C} m\left(\tau_{21}+\tau_{43}\right)+2 \pi m \mathcal{E}} \tag{S2.16}
\end{equation*}
$$

Let us choose some particular time ordering, for instance, $\tau_{1}>\tau_{4}>\tau_{2}>\tau_{3}$. In this case, the correlator becomes

$$
\begin{equation*}
F\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=\frac{1}{Z_{C}} \sum_{m} e^{-\frac{E_{C}}{T} m^{2}+E_{C}\left(\tau_{14}+\tau_{23}\right)(2 m-1)+2 \pi m \mathcal{E}} \tag{S2.17}
\end{equation*}
$$

The main contribution to this sum comes from $m=0$. This term was discussed in [62] and reads

$$
\begin{equation*}
e^{-E_{C}\left(\tau_{14}+\tau_{23}\right)} \tag{S2.18}
\end{equation*}
$$

Note that only certain time orderings are relevant for the inelastic co-tunneling process. Namely, $\tau_{1}, \tau_{4}>\tau_{2}, \tau_{3}$ or $\tau_{2}, \tau_{3}>\tau_{1}, \tau_{4}$ are relevant, while other orderings (e.g. $\tau_{1}, \tau_{2}>\tau_{3}, \tau_{4}$) correspond to two sequential direct tunnelings ([79]). For all 8 possible relevant time orderings, (S2.16) simplifies to

$$
\begin{equation*}
F\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=\frac{1}{Z_{C}} \sum_{m} e^{-\frac{E_{C}}{T} m^{2}-E_{C}\left(\left|\tau_{41}\right|+\left|\tau_{32}\right|\right)+E_{C} m\left(\tau_{41}+\tau_{23}\right)+2 \pi m \mathcal{E}} \tag{S2.19}
\end{equation*}
$$

G and G_{T} in the small tunneling approximation are proportional to

$$
\begin{equation*}
\int d^{4} \tau e^{-E_{C}\left(\tau_{14}+\tau_{23}\right)}\left\langle G_{\tau_{1}, \tau_{2}}[h] G_{\tau_{3}, \tau_{4}}[h]\right\rangle_{h} \tag{S2.20}
\end{equation*}
$$

so the contributions from times $\tau_{4} \neq \tau_{1}$ and $\tau_{3} \neq \tau_{2}$ are exponentially suppressed. This allows to approximate

$$
\begin{equation*}
\left\langle G_{\tau_{1}, \tau_{2}}[h] G_{\tau_{3}, \tau_{4}}[h]\right\rangle_{h} \simeq\left\langle G_{\tau_{1}, \tau_{2}}[h] G_{\tau_{2}, \tau_{1}}[h]\right\rangle_{h} \tag{S2.21}
\end{equation*}
$$

in the integral above.
We are interested in terms with non-zero m, which are exponentially small at low temperatures ($T \ll E_{C}$) comparing to (S2.18), so we can consider only $m= \pm 1$ terms. Integrating Eq.(S2.20) for various time orderings, one obtains a time-independent constant in the leading order. This term is dominant for conductivity, but first nonvanishing contribution to thermal conductivity comes from next terms, proportional to $e^{-E_{C} \tau_{12}+2 \pi \mathcal{E}}$ and $e^{E_{C} \tau_{12}-2 \pi \mathcal{E}}$.

FIG. S1. Electric conductance G accounting for elastic and inelastic co-tunneling in the conformal regime, $E_{C} / T^{*}=10$, $N=50, G_{0}=\frac{\left(T^{*}\right)^{2}}{v_{F}},\left(\lambda / T^{*}\right)^{2}=0.03$. The lines correspond to $\mathcal{E}=0$ (blue) and $\mathcal{E}=0.1$ (red). Inset: $L n-\ln$ plot for electric conductance G in the Schwarzian regime for the same values of \mathcal{E}.

ELECTRIC CONDUCTANCE G

Here we provide our results for the electric conductance G obtained by evaluation of Eq. (5). Fig. S1 shows G accounting for both elastic and inelasic processes. In the conformal regime, electric conductance scales as $G \sim \frac{1}{\sqrt{T}}$ for $T \gg E_{C}$ (this scaling comes from direct tunneling), while $G \sim T$ at $T^{*} \ll T \ll E_{C}$ (it stems from inelastic cotunneling). The direct tunneling contribution becomes dominant with increase of temperature, so the intermediate region with dominant direct tunneling $G \sim e^{-E_{C} / T}$ is seen there at $T \simeq E_{C}$. The inset demonstrates the electric conductance in the Schwarzian regime of the theory $T \ll T^{*} \ll E_{C}$, here G scales as $G \sim T^{3 / 2}$, this scaling stems from the inelastic co-tunneling. These results are in agreement with [60, 62]. They are further used for evaluation of the thermopower \mathcal{S} Eq. (12) of the main text.

THERMOPOWER \mathcal{S} AS A FUNCTION OF THE SPECTRAL ASYMMETRY PARAMETER \mathcal{E}

As discussed in the main text, the thermopower \mathcal{S} is antisymmetric in the spectral asymmetry parameter \mathcal{E}. \mathcal{S} is linear in the leading order of \mathcal{E} close to the particle-hole symmetric point $(\mathcal{E} \ll 1)$. This behavior of the thermopower (multiplied on the electric charge e to form dimensionless units) is plotted in Fig. S2. Note the scale of the inset showing the thermopower in the Schwarzian regime - \mathcal{S} is exponentially suppressed by temperature in accordance with Eq. (12).

FIG. S2. Thermopower \mathcal{S} accountable for elastic and inelastic co-tunneling in the conformal regime as a function of \mathcal{E}, $N=50, E_{C} / T^{*}=10,\left(\lambda / T^{*}\right)^{2}=0.03 . T / T^{*}=2$ (blue line), $T / T^{*}=5$ (red line), $T / T^{*}=10$ (green line). Inset: Thermopower \mathcal{S} in the Schwarzian regime, $T / T^{*}=0.2$.

