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We adopt the notations and definitions of the main text and use the numeration of equations and references of
the Letter.

DERIVATION OF G, GT AND κ

In accordance with Eq.(1), the transport coefficients can be found by taking derivatives of Eq.(4) by voltage at
uniform temperature (coefficient G) and by temperature at zero voltage (coefficient GT ). Here we perform this
procedure explicitly.

Let us start with the conductance G. It is defined as

G =
I

∆V

∣∣∣∣
∆V=0

= 2π

∫ ∞
−∞

dερa(ε)ρc(ε)∂∆V (f(ε+ ∆V, T + ∆T )− f(ε, T ))

∣∣∣∣
∆V=0

. (S1.1)

ρa(ε) = (2πvF )−1 (see the main text), so this expression is further simplified as

G = − 1

4vFT

∫ ∞
−∞

dε
ρc(ε)

cosh2
(
ε

2T

) . (S1.2)

It was shown in [28] that the density of states ρc(ε) can be expressed in a general form via the T-matrix T in the
real time representation

ρc(ε) = − 1

π
cosh

( ε

2T

)∫ ∞
−∞

dtT
(

1

2T
+ it

)
eiεt. (S1.3)

Combining Eqs.(S1.2) and (S1.3), we have

G =
1

4πvFT

∫ ∞
−∞

dtT
(

1

2T
+ it

)∫ ∞
−∞

dε
eiεt

cosh
(
ε

2T

) =
1

2vF

∫ ∞
−∞

dt

cosh (πTt)
T
(

1

2T
+ it

)
. (S1.4)

GT is obtained in the same way.

GT =
I

∆T

∣∣∣∣
∆T=0

= 2π

∫ ∞
−∞

dερa(ε)ρc(ε)∂∆T (f(ε, T + ∆T )− f(ε, T ))

∣∣∣∣
∆T=0

. (S1.5)

Plugging DOS Eq.(S1.3) in Eq.(S1.5), we obtain

GT =
i

4vFπT 2

∫ ∞
−∞

dtT (
1

2T
+ it)

∂

∂t

2πT

cosh (πTt)
= − iπ

2vF

∫ ∞
−∞

dt
sinh (πTt)

cosh2 (πTt)
T
(

1

2T
+ it

)
. (S1.6)

By treating the thermal current in the similar way, we get the coefficient K and the thermal conductance κ.

K = − 1

4vFT

∫ ∞
−∞

dtT
(

1

2T
+ it

)
∂2

∂t2
1

cosh (πTt)
= −π

2T

2vF

∫ ∞
−∞

dtT
(

1

2T
+ it

){
1

cosh (πTt)
− 2

cosh3 (πTt)

}
,(S1.7)

here we used the identity sinh2 x ≡ cosh2 x− 1.

κ = K − 1

T

G2
T

G
=
π2T

vF

∫ ∞
−∞

dtT
(

1

2T
+ it

)
1

cosh3 (πTt)
− Tπ2G− 1

T

G2
T

G
(S1.8)

These expressions are Eqs. (5-7) from the main text.
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CORRELATORS

Two-point Coulomb correlator D(τ1, τ2)

Let us reproduce here the derivation on then so-called Coulomb boson correlator arising due to averaging of the
U(1) gauge field:

D(τ1, τ2) =
〈
e−iφ(τ1)eiφ(τ2)

〉
φ
. (S2.1)

The Green’s function antiperiodicity condition G(β2 ) = −G(−β2 ) imposes that φ(β2 ) = φ(−β2 ) + −2πiE + 2πW ,
where E is the spectral asymmetry, W in the winding number. We decompose the φ field such that φ(τ) =
η(τ) + 2π(W − iE)Tτ introducing a periodic function η(τ): η(β2 ) = η(−β2 ). The correlator (S2.1) now reads

D(τ1, τ2) =
1

ZC

∑
W∈Z

∫
D[η]e−iη(τ1)eiη(τ2)e−2πi(W−iE)T (τ1−τ2)e

−
∫
dτη′(τ) 1

4EC
η′(τ)−π2T

(W−iE)2
EC (S2.2)

=
〈
e−iη(τ1)eiη(τ2)

〉
η

〈
e−2πi(W−iE)T (τ1−τ2)

〉
W
, (S2.3)

ZC is the partition sum which normalizes the correlator

We start with averaging over the η fields (we use here the Fourier image ηm = 1
β

∫ β
0
dτητe

iωmτ , ωm = 2πTm):

〈...〉η =

∫
D[η]e

i
∫ τ2
τ1

dτη′(τ)
e
−
∫
dτη′(τ) 1

4EC
η′(τ)

=

∫
D[η]e

β
∑
m6=0

(
ω2
mη−mηm

4EC
−iηmJ

τ1;τ2
−m

)
, (S2.4)

where Jτ1,τ2m = eiωmτ1−eiωmτ2 is the Fourier image of δ(τ−τ1)−δ(τ−τ2). The resulting integral over η is Gaussian,
it gives

〈...〉η = e
−β
∑
m 6=0

EC
ω2
m
J
τ1,τ2
−m Jτ1,τ2m , qJτ1,τ2−m Jτ1,τ2m = 2

(
1− eiωm(τ2−τ1)

)
(S2.5)

This 〈...〉η correlator was discussed in [72–76]. Using the Sommerfeld-Watson transformation for Eq.(S2.4), one
obtains

〈...〉η = e−EC(|τ2−τ1|− (τ2−τ1)2

β ). (S2.6)

The other part of the Coulomb correlator, namely contribution from the winding numbers was evaluated in [72].
Using the Poisson formula

∞∑
k=−∞

e−
a
2 k

2+ixk =

√
2π

a

∞∑
n=−∞

e−
1
2a (x−2πn)2 , (S2.7)

one can evaluate the partition sum ZC and the two-point propagator 〈e2πiT (W−iE)(τ2−τ1)〉W .

ZC =
∑
W

e
− 4π2T (W−iE)2

4EC =
∑
m

e−
EC
T m2+2πmE , (S2.8)

〈...〉W =
1

ZC

∑
m

e
−π

2T (W−iE)2
EC

+2πiT (W−iE)(τ2−τ2)
=

1

ZC

∑
m

e−βEC(m−(τ2−τ1)T )2+2πmE . (S2.9)

The correlators above are normalized by corresponding partition sums. Quadratic terms in the exponents of both
correlators (S2.6) and (S2.9) cancel each other, so the result is

D(τ1, τ2) =
e−EC |τ2−τ1|

ZC

∞∑
m=−∞

e−2ECm(τ2−τ1)−βECm2+2πmE . (S2.10)
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Four-point Coulomb correlator

Now we consider the same procedure applied to the four point Coulomb correlator

F (τ1, τ2, τ3, τ4) =
〈
e−iφ(τ1)eiφ(τ2)e−iφ(τ3)eiφ(τ4)

〉
φ
. (S2.11)

The approach is analogous to the former (two-point) case. Decomposing φ(τ) field into the periodic field η(τ) and
the winding number contribution, we get factorization of two propagators.

〈
e
β
∑
m6=0 ωmηm(

∫ τ2
τ1

dτeiωmτ+
∫ τ4
τ3

dτ̃eiωmτ̃ )
〉
η

= e
−β
∑
m6=0

EC
ω2
m

(J
τ1;τ2
−m +J

τ3;τ4
−m )(Jτ1;τ2

m +Jτ3;τ4
m )

. (S2.12)

(Jτ1;τ2
m + Jτ3;τ4

m ) = 2
(
1− eiωmτ41

)
+ 2

(
1− eiωmτ32

)
+ 2eiωmτ31 − 2eiωmτ21 + 2eiωmτ42 − 2eiωmτ43 , (S2.13)

where we denoted τij ≡ τi − τj .

〈...〉η = e−EC(|τ41|+|τ32|−|τ31|−|τ42|+|τ21|+|τ43|)+
EC
β (τ2

41+τ2
32−τ

2
31−τ

2
42+τ2

21+τ2
43) (S2.14)

Averaging over winding numbers, we get〈
e2πi(W−iE)T (τ21+τ43)

〉
W

=
1

ZC

∑
m

e−βEC(m−(τ21+τ43)T )2+2πmE . (S2.15)

The quadratic terms in these two correlators cancel each other, so the resulting four-point function is

F (τ1, τ2, τ3, τ4) =
1

ZC

∑
m

e−
EC
T m2−EC(|τ41|+|τ32|−|τ31|−|τ42|+|τ21|+|τ43|)+ECm(τ21+τ43)+2πmE . (S2.16)

Let us choose some particular time ordering, for instance, τ1 > τ4 > τ2 > τ3. In this case, the correlator becomes

F (τ1, τ2, τ3, τ4) =
1

ZC

∑
m

e−
EC
T m2+EC(τ14+τ23)(2m−1)+2πmE . (S2.17)

The main contribution to this sum comes from m = 0. This term was discussed in [62] and reads

e−EC(τ14+τ23). (S2.18)

Note that only certain time orderings are relevant for the inelastic co-tunneling process. Namely, τ1, τ4 > τ2, τ3 or
τ2, τ3 > τ1, τ4 are relevant, while other orderings (e.g. τ1, τ2 > τ3, τ4) correspond to two sequential direct tunnelings
([79]). For all 8 possible relevant time orderings, (S2.16) simplifies to

F (τ1, τ2, τ3, τ4) =
1

ZC

∑
m

e−
EC
T m2−EC(|τ41|+|τ32|)+ECm(τ41+τ23)+2πmE . (S2.19)

G and GT in the small tunneling approximation are proportional to∫
d4τe−EC(τ14+τ23) 〈Gτ1,τ2 [h]Gτ3,τ4 [h]〉h , (S2.20)

so the contributions from times τ4 6= τ1 and τ3 6= τ2 are exponentially suppressed. This allows to approximate

〈Gτ1,τ2 [h]Gτ3,τ4 [h]〉h ' 〈Gτ1,τ2 [h]Gτ2,τ1 [h]〉h (S2.21)

in the integral above.
We are interested in terms with non-zero m, which are exponentially small at low temperatures (T � EC)

comparing to (S2.18), so we can consider only m = ±1 terms. Integrating Eq.(S2.20) for various time orderings,
one obtains a time-independent constant in the leading order. This term is dominant for conductivity, but first non-
vanishing contribution to thermal conductivity comes from next terms, proportional to e−ECτ12+2πE and eECτ12−2πE .
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FIG. S1. Electric conductance G accounting for elastic and inelastic co-tunneling in the conformal regime, EC/T
∗ = 10,

N = 50, G0 = (T∗)2

vF
, (λ/T ∗)2 = 0.03. The lines correspond to E = 0 (blue) and E = 0.1 (red). Inset: Ln−ln plot for electric

conductance G in the Schwarzian regime for the same values of E .

ELECTRIC CONDUCTANCE G

Here we provide our results for the electric conductance G obtained by evaluation of Eq. (5). Fig. S1 shows G
accounting for both elastic and inelasic processes. In the conformal regime, electric conductance scales as G ∼ 1√

T

for T � EC (this scaling comes from direct tunneling), while G ∼ T at T ∗ � T � EC (it stems from inelastic co-
tunneling). The direct tunneling contribution becomes dominant with increase of temperature, so the intermediate
region with dominant direct tunneling G ∼ e−EC/T is seen there at T ' EC . The inset demonstrates the electric
conductance in the Schwarzian regime of the theory T � T ∗ � EC , here G scales as G ∼ T 3/2, this scaling stems
from the inelastic co-tunneling. These results are in agreement with [60, 62]. They are further used for evaluation
of the thermopower S Eq. (12) of the main text.

THERMOPOWER S AS A FUNCTION OF THE SPECTRAL ASYMMETRY PARAMETER E

As discussed in the main text, the thermopower S is antisymmetric in the spectral asymmetry parameter E .
S is linear in the leading order of E close to the particle-hole symmetric point (E � 1). This behavior of the
thermopower (multiplied on the electric charge e to form dimensionless units) is plotted in Fig. S2. Note the scale
of the inset showing the thermopower in the Schwarzian regime - S is exponentially suppressed by temperature in
accordance with Eq. (12).
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FIG. S2. Thermopower S accountable for elastic and inelastic co-tunneling in the conformal regime as a function of E ,
N = 50, EC/T

∗ = 10, (λ/T ∗)2 = 0.03. T/T ∗ = 2 (blue line), T/T ∗ = 5 (red line), T/T ∗ = 10 (green line). Inset:
Thermopower S in the Schwarzian regime, T/T ∗ = 0.2.
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